Developing, Buying, and Fielding Superior Weapon Systems

The following piece was published in October 2014 in a report, Defense Acquisition Reform: Where Do We Go from Here? A Compendium of Views by Leading Experts, by the Senate's Permanent Subcommittee on Investigations. It has been excerpted and updated.

BY THOMAS CHRISTIE

The current Department of Defense acquisition process that develops, tests, and procures new weapons for U.S. combat forces has evolved over the past five decades in response to multiple defense management strategy initiatives, external reform proposals, and lessons-learned from the field. Conventional wisdom notwithstanding, the process as spelled out in DoD's directives and instructions is fundamentally sound and could avoid unending cost overruns, delays, and performance failures if it were implemented in a better-informed and rigorously disciplined manner. The problem is not nearly as much in the laws and regulations as it is in the execution by the people who have been operating the system.

Essential ingredients for a viable weapons acquisition system include:

• budgeting with truly independent estimates of program development, procurement, and support costs;
• an evaluation process, again independent, to find and correct reliability problems early and throughout the entirety of a program’s life cycle;
• conducting combat-realistic operational tests of weapons, and issuing honest and complete reports to permit decision-makers inside and outside the Pentagon to make properly informed judgments.

There are other features of the process that need attention and must be executed, not circumvented, to achieve successful weapons at an affordable cost in a reasonable time. These other aspects include:

• insisting on discipline throughout the decision-making process;
• cleaning up the front end of the process where dubious requirements and buy-in cost and schedule promises are greeted without criticism and committed to;
• demonstrating through empirical field testing, not success-oriented modeling and simulation, new technologies before each major decision-maker approval point;
• establishing and carrying out event-based strategies accompanied by realistic pass/fail criteria for each phase of a program;
• conducting continuous independent evaluations of programs all the way through development, testing, production, and even after introduction in the field—to include training exercises and combat results; and
• feeding back all such results completely and accurately to the entire acquisition community.

Nothing in today’s laws and regulations prevent any of the above; most are actually called for, and yet they almost never happen.

The Need for Reform Is Not New

Proceeding with any new weapon system development, production, and fielding with the Pentagon acquisition process as currently implemented (or, perhaps more
appropriately, not implemented) will only continue the debacles of the past. Both past and present Pentagon leadership has been painfully aware that “Something’s wrong with the system,” as Secretary of Defense Donald Rumsfeld told Congress in 2005.1

More recently, Secretary of Defense Robert Gates was perceptive in stating:

“First, this department must consistently demonstrate the commitment and leadership to stop programs that significantly exceed their budget or which spend limited tax dollars to buy more capability than the nation needs. . . .

Second, we must ensure that requirements are reasonable and technology is adequately mature to allow the department to successfully execute the programs. . . .

Third, realistically estimate program costs, provide budget stability for the programs we initiate, adequately staff the government acquisition team, and provide disciplined and constant oversight.

We must constantly guard against so-called ‘requirements creep,’ validate the maturity of technology at milestones, fund programs to independent cost estimates, and demand stricter contract terms and conditions.”2

Once again, there is nothing wrong with the assertions, but even with Secretary Gates’ many subsequent program alterations, a few actual cancellations, and some modest overhead savings, can anyone say that the Pentagon has transformed into the more efficient, accountable, organization Gates said he wanted? More, much more, actual implementation is required.

Congress has behaved similarly—

As the Irrepressible Wheeler Retires, Smithberger Takes the Helm

BY JACOB MARX, POGO DEFENSE BUDGET ANALYST

After thirteen years as Director of the Straus Military Reform Project, Winslow Wheeler has retired.

Wheeler made it his mission to fight wasteful defense spending and the idiocy that seems to run rampant at the Pentagon. From 1971 to 2002, he worked on national security issues for members of the United States Senate and for the Government Accountability Office. An anonymous essay in 2002 entitled, “Mr. Smith Is Dead: No One Stands in the Way as Congress Lards Post-September 11 Defense Bills with Pork” led to Wheeler’s resignation from the Senate Budget Committee when he was revealed as the author. He joined CDI soon after, where he remained a forceful and effective advocate for Pentagon oversight and reform.

Wheeler was a leading opponent of the F-35, attacking the program for bloated costs, poor design, and failures to stay on schedule. He wrote prolifically on the topic and appeared frequently in radio, TV, and print media to provide expert commentary. His ability to translate technical language into clear prose made him an invaluable asset to those seeking to understand and rein in the Pentagon’s “supersonic albatross.” Also while at CDI, he edited The Pentagon Labyrinth: 10 Short Essays to Help You Through It, a collection of essays on Pentagon oversight, and in 2013 published a book, The Wastrels of Defense: How Congress Sabotages U.S. Security.

While Wheeler’s presence will be sorely missed, his work will continue. He is succeeded by Mandy Smithberger, a former POGO intern and national security investigator who most recently served as an advisor to Representative Jackie Speier (D-CA). Wheeler, who assisted in the search process for his successor, said of Smithberger, “In addition to a high level of intellect and energy, Mandy brings two essential ingredients to the Straus Military Reform Project at POGO: First, a fundamental understanding of what military reform is and is not—separating the real from the cosmetic—and second, a strong nose for and repellent reaction to the decay that has beset our shrinking, aging, less trained armed forces for decades at very high and frequently even increasing budget levels, especially during that last two presidencies.”

Smithberger has already made good on her predecessor’s promise. She set off shockwaves in the defense world after discovering that the Air Force had manipulated data on friendly-fire and civilian casualties in order to bolster their argument against keeping the A-10 (see page 10). Her latest report on the F-35’s continued failure (see page 7) was covered by The Fiscal Times, Mother Jones, and other publications.

As an advisor to Representative Speier, Smithberger worked on passing key provisions of the Military Whistleblower Protection Enhancement Act into law, and on an amendment to the National Defense Authorization Act (NDAA) that required closer scrutiny of the Littoral Combat Ship program’s deficiencies.

We welcome Mandy into her new role, and wish Winslow—who will continue advising us when he’s not working on his Karmann Ghia—the best in his retirement.
A typical hardware program will involve three to five administrations and ten or more Congresses. By the time the technical and cost issues finally become known in the current system, few, if any, of those involved initially are still around, and those who are refuse to admit they had been wrong, to cut their losses before the problems worsen, or to discipline the system by making an example of program officials and their contractors who have sold the Department and the taxpayers a bill of goods.

What Is Needed?

There isn’t much that knowledgeable observers of, and participants in, this process haven’t already identified as problems and have proposed solutions for. They all appear in existing acquisition directives and instructions. Implementing them, rather than exercising their loopholes, is the starting point for fixing the process.

Hard-nosed discipline on the part of decision-makers at the front end of the process is crucial to reining in the appetite of the requirements community and precluding ill-informed development decisions based on immature technologies and optimistic projections of system costs, schedule, and performance. Up-front realistic cost estimates and technical risk assessments, developed by independent organizations outside the chain of command for major programs, should inform Defense Acquisition Executives. The requirement for those assessments to be independent, not performed by organizations already controlled by the existing self-interested sections of the bureaucracy—as is the case now, even after WSARA 2009—is essential.

The existing process has readily approved presumed quantum leaps in claimed capability that are reflected in high-risk, often unattainable, technical and operational requirements. Many of these system performance goals have resulted from the salesmanship of the DoD research and development communities, combined with industry lobbying, which have successfully convinced the user and the rest of the acquisition community that the hypothetical advanced capabilities could be delivered rapidly and cheaply.

In case after case, Pentagon decision-makers have allowed programs to enter FSED/EMD and even low-rate initial production before technical problems are identified, much less solved; before credible independent cost assessments are made and included in program budget projections; and before the more risky requirements are demonstrated in testing. This is nothing more than a “buy-in” to “get the camel’s nose under the tent.”

The MV-22 is a good example of a major program that encountered technical and cost problems after entering EMD in 1986, yet was approved to enter low-rate initial production (LRIP). In 1999, the urgency of replacing aging CH-46s drove decisions to severely reduce development testing before its completion, to enter operational testing prematurely, and to gain approval LRIP.

In April 2000, an MV-22 crashed during an operational test resulting in the deaths of 19 Marines. The official investigation into this tragic accident reported that the Flight Control System Development and Flying Qualities Demonstration (FCSDFQD) test, designed to examine the phenomenon known as power settling, was reduced from 103 test flight conditions to 49, of which only 33 were actually flight-tested with particularly critical test points not flown at all.

This series of events, culminating—
ing in the April 2000 accident and another crash in December of that year, brought the program to halt, nearly resulting in its termination.

Despite these setbacks, the program continued in low-rate production while Pentagon leadership debated whether to continue the program. In the end, the MV-22 program recovered, executed the full range of technical testing that should have been done previously, and was introduced into Marine Corps medium-lift forces in 2005, nearly 25 years after the decision to initiate the program. In the meantime, some 70 or more MV-22s had been procured, many of which required expensive modifications to correct deficiencies discovered in testing.

The process has become even more cumbersome with increased involvement of the Joint Chiefs of Staff (JCS). Over the years, the Joint Requirements Oversight Council (JROC) and the Joint Capabilities Integration and Development System (JCIDS) process were established to ostensibly provide the combat forces a greater voice in setting requirements. There is, however, little evidence that the “reformed” process has made any significant changes to programs as originally proposed by the advocates.

What is needed is real reform.

REAL REFORM

Fly-Before-Buy/Competitive Prototype Demonstration

The “Fly-Before-Buy” philosophy should be the mandated standard for all programs. Perhaps a better term would be “Fly-Before-Decide.” Done properly, it will demand the demonstration, through actual field testing of new technologies, subsystems, concepts, etc., of certain success criteria before proceeding to each new milestone, not just the production decision. Accordingly, successful and competitive prototype development and testing should be a hard and fast prerequisite for any new development proceeding into the FSED/EMD phase. The Achilles heel of many a defense program has been its failure to adhere to this strategy, resulting in technical difficulties and costly development delays that could have been avoided had the decision-maker demanded successful completion of realistic prototype testing and evaluation.

Critical to the success of such a strategy is allocating sufficient upfront funding and schedule to permit a robust comparative evaluation of prototype systems in an operational environment during the Demonstration/Validation (Dem/Val) phase. The Department has paid only lip service in the past to the com-
petitive prototype demonstration requirement spelled out in its own directives. DoD should establish, adequately fund, and maintain operational units (e.g., aircraft squadrons, ground force brigades/battalions), independent of R&D organizations, to conduct tests and experiments to affect this concept.

REAL REFORM

Continuous Evaluations

As a new program begins, a process of continuous and independent evaluation must be established to track the program through development, testing, and production, and eventual fielding and employment by operational forces. In the early stages, such evaluations should be based on emerging test results and updated cost estimates and should focus on those attributes or capability measures that formed the basis for program approval. These evaluations should be updated with results presented to senior leadership on a routine basis, certainly at least annually. Such evaluations should inform decisions about whether or not to proceed with the program or to restructure the program goals and acquisition strategy.

It is extremely important that this process of continuous evaluation extend beyond development. Organizations, independent of both the development and operational communities, should be established and maintained to track experience with new and existing systems in the field, evaluating data gathered in training sorties and exercises as well as in combat, where applicable. Assessments should include the usual measures of system performance and all aspects of system supportability, including reliability, availability, and maintainability (RAM) and safety, training, and human factors.

Conclusion

As the country enters what promises to be a prolonged period of fiscal austerity, it can no longer afford the extravagance of spending hundreds of billions of dollars and not receiving the capabilities it paid for. Fortunately, we have an extensive base of experience, derived from both military and commercial programs, that we can draw upon to avoid the mistakes of the past.

We are also fortunate that there is no need to rush new systems into development and procurement in order to counter some imminent new threat. The F-16, for example, entered operational service in 1980 and is still in production. It and the remaining A-10s in the Air Force’s inventory are more than adequate aircraft for existing missions in Afghanistan and against ISIS, and for conventional threats, should they arise. There is no projected threat on the horizon that would justify taking additional risk by compressing development schedules for any new system (such as the highly problematic F-35 program). Moreover, compressing prescribed schedules when real threats actually exist, such as during the Cold War, has proven to be a huge cost and performance disaster—and to save no time.

We have the tools and expertise we need to make substantial reductions in the cost overruns, performance disappointments, and schedule slips that plague our weapon programs. What we do not have, or have not had consistently, is the determination to apply the available tools, especially when it means canceling troubled programs that are generating careers in the Pentagon and jobs and votes outside it.

Thomas Christie served as DoD’s Director of Operational Test & Evaluation, retiring in 2005 after four years in that position. Prior to that, Christie was Director of the Operational Evaluation Division at the Institute for Defense Analyses (IDA). Between 1985 and 1989, he was Director of Program Integration at the DoD, reporting directly to the Defense Acquisition Executive, after holding other senior positions in the Office of the Secretary of Defense.
INSIDE-THE-BELTWAY WISDOM HOLDS that the $1.4 trillion F-35 Joint Strike Fighter (JSF) program is too big to cancel and is on the road to recovery. But the latest report from the Defense Department’s Director of Operational Test and Evaluation (DOT&E) provides a litany of reasons that conventional wisdom should be considered politically driven propaganda.¹

The press has already reported on a litany of problems that are increasing costs and risks to the program.² Yet rather than slowing down production to focus resources on fixing these critical problems, Congress used the year-end continuing resolution omnibus appropriations bill—termed the “cromnibus”—to add 4 additional planes to the 34 the Department of Defense budgeted for Fiscal Year 2015. The original FY 2016 plan significantly increased the buy to 55, and now the program office is further accelerating its purchase of these troubled planes to buy 57.³

At some point, the inherent flaws and escalating costs of a program become so great that even a system with massive political buy-in reaches a tipping point. The problems described in the DOT&E report show that the F-35 has reached a stage where it is now obvious that the never-ending stream of partial fixes, software patches, and ad hoc workarounds are inadequate to deliver combat-worthy, survivable, and readily employable aircraft. This year’s report also demonstrates that, in an effort to maintain the political momentum of the F-35, the aircraft’s program office is not beneath misrepresenting critically important characteristics of the system.

The old problems are not going away, new issues are arising, and some problems may be getting worse.

Overall, DOT&E’s report reveals:
- The Joint Program Office, led by Lt. Gen. Chris Bogdan, is re-categorizing or failing to count aircraft failures to try to boost maintainability and reliability statistics.
- Testing is continuing to reveal the need for more tests, but the majority of the fixes for capability deficiencies are being deferred to later blocks rather than being resolved.
- The F-35 has a significant risk of fire due to extensive fuel tank vulnerability; lightning vulnerability; and deficiencies in the OBIGGS system—a system that is supposed to displace flammable fuel tank vapors with inert nitrogen—which is still unable to sufficiently reduce fire-sustaining oxygen, despite redesigns.
- Wing drop concerns are still not resolved after six years, and may only be mitigated or solved at the expense of combat maneuverability and stealth.
- A major engine failure that occurred in June 2014 has created new restrictions that are seriously impeding or preventing the completion of key test points, including ensuring that the F-35B delivered to the Marine Corps for Initial Operational Capability (IOC)—the minimum deployable capability—meets critical safety requirements; no redesign, schedule, or cost estimate for a long-term fix has been defined yet, thereby further impeding load-factor (g) testing.
- Even in its third iteration, the F-35’s helmet continues to show high false-alarm rates and computer stability concerns, seriously reducing pilots’ situational awareness, which would endanger their lives in combat.
- The number of Block 2B’s (already limited) combat capabilities being deferred to later blocks means that...
the Marine Corps’ FY 2015 IOC squadron will be even less combat capable than originally planned.

- Software failures in the F-35’s logistics system, called the Automatic Logistics Information System (ALIS), continue to impede operation, mission planning, and maintenance of the F-35, forcing the military services to be overly reliant on contractors and “unacceptable workarounds.”

- Deficiencies in Block 2B software, and deferring those capabilities to later blocks, is undermining combat suitability for all three variants of the F-35.

- The program’s attempts to save money now by reducing test points and deferring crucial combat capabilities will result in costly retrofits and fixes later, creating a future unaffordable bow wave that, based on F-22 experience, will add at least an additional $67 billion in acquisition costs.

- Low availability and reliability of the F-35 is driven by inherent design problems that are only becoming more obvious and difficult to fix.

Testing Being Deferred, Not Completed

In order to show that they are more or less keeping up with their announced testing schedule, the F-35 program office has been eliminating and “consolidating” test points by the hundreds instead of actually flying more. Specifically, DOT&E wrote, “[t]he program is eliminating test points that are designed to characterize performance (i.e., in a larger combat maneuvering envelope than a specific contract specification condition), reducing the number of test points needed to verify the 2B capability for fleet release, and deferring fixes for deficiencies to Block 3.” Those eliminations include 840 test points in February that were intended to support certifying the Block 2B release in time for this summer’s launch of the Marines’ IOC effort; as a result, the IOC squadron will be flying with an uncertified 2B avionics system.

DOT&E also found that each planned test point accomplished uncovers the need for another .91 “growth” test points in order to fix the newly discovered problems. To cover up the slow test progress due to growth test points, the program is deferring fixes for an average of 61 percent of these newly discovered deficiencies in Block 2B to later blocks.

Dangerous Helmet Failures

The F-35’s helmet-mounted display system (HMDS) projects onto the pilot’s visor threat information, flight instrument readouts, and almost 360-degree video and infrared images of the world around the pilot. Suppos-
estimate. They include B-61 nuclear bomb integration, external weapons pylons and load integration, external fuel tanks, 25mm gun pods, 25mm combat ammunition, Joint Standoff Weapon guided weapons integration, adding long range infrared scan and track, new radio/data links for interoperability with the F-22s, F-15s, and F-16s, integrating the six-Advanced Medium-Range Air-to-Air Missile load, AIM 9X air-to-air missile integration, all-aspect passive threat detection, maritime radar mode, and more.\(^1\)

The total cost of test, retrofit, and capabilities deferral can be significant. In the $67.3 billion F-22 program, the Air Force deferred so many fixes and capabilities past the end of production that the resulting F-22 “modernization” package added $11.3 billion of previously unacknowledged costs—a 17 percent add-on to the F-22 procurement.\(^2\) (This modernization package, which largely fixed deferred shortcomings and deferred capabilities, is included in this year’s DOT&E report as a separate major acquisition program suffering additional “stability and radar performance shortfalls.”\(^3\)) Simply based on the DOT&E analysis of deferred testing and the Joint Program Office’s descriptions of Blocks 4, 5, 6, and 7 capabilities,\(^4\) the F-35 program appears to be deferring significantly more testing, fixes, and capabilities than the F-22 did. Assuming the proportion of F-35 deferred work to be no greater than the F-22, the F-35 program’s hidden “bow wave” can be calculated to amount to $67 billion, an overrun equal to the entire program cost of the F-22.\(^5\)

Conclusion: Exquisitely Limited Capability

The F-35 is years away from being ready for initial operational capability. To send this airplane on a combat deployment, or to declare it ready to be sent, as early as the Marines’ 2015 or the Air Force’s 2016 IOC dates, is a politically driven and irresponsible mistake. DOT&E’s report shows that the current IOC plans for the F-35A and B should be rejected as unrealistic. Without meaningful oversight from the Department of Defense or Congress, however, these IOC declarations will go unchallenged.

The F-35 program is designed so that there is no requirement to prove its combat capability before approving an annual production rate of 57 aircraft, a rate unprecedented for any fighter with so little operational testing accomplished and so many unresolved problems. Further production of the F-35 at this point, let alone an increase in already high and unwarranted production rates, is unsupported by the DOT&E data. But that data is being ignored to continue funding a politically driven acquisition program.\(^6\)

The F-35’s unrealistic production and IOC schedule is divorcing the declaration of initial operating capability from operational reality. Deferring combat capabilities, increasing future costs, and increasing the risk of delivering seriously deficient combat effectiveness mandates revising the current schedules for IOC and for production ramp-up. Further accelerating a program with this many major design, safety, and reliability problems is a disservice to our people in uniform who have to fly, maintain, and go to war with this weapons system.

Despite Congress’s rhetoric regarding reform and accountability, they are rewarding the cooking of data, reckless program concurrency, and disastrous acquisition management by approving and funding the F-35’s current path. Their accession and approval will ensure that future acquisition programs have even worse outcomes. \(\rule{1.5em}{.1em}\)

5. Ibid., p. 39.
6. Ibid., p. 51.
9. Ibid., p. 52.
Air Force headquarters continues campaign against the A-10

BY MANDY SMITHBERGER, DIRECTOR, STRAUS MILITARY REFORM PROJECT

Air Force headquarters is engaged in an all-out campaign to bolster its failing effort on Capitol Hill to prematurely retire the A-10.

In January, the Arizona Daily Independent reported that the Vice Commander of Air Combat Command (ACC) General James Post said that service members who spoke to Congress about the capabilities and successes of the A-10 are committing “treason.” In addition to these comments, Congress also learned that the Air Force has initiated retaliatory investigations against service members who have come forward. And to top it all off, Air Force headquarters cherry-picked and then declassified selected statistics for USA Today—all to tar the A-10 with the inaccurate claim of having killed more American troops and civilians in Afghanistan than any other plane. Those cooked statistics excluded—and kept classified—data that is essential for a basic understanding of the issue.

The key issue Air Force headquarters obscures is the rate at which these tragic losses occur. Obviously, some aircraft have flown far more attack missions than other aircraft. For instance, the A-10 has flown 4.5 times as many firing sorties as the B-1. For a combat aircraft, you must look at the ratio of those losses to the number of sorties flown. Without this crucial rate, which the Air Force downplayed or excluded entirely, you can’t determine the likelihood of friendly or civilian casualties or which plane types are least likely to inflict these terrible losses.

Even when you look at the Air Force headquarters’ doctored statistics, it turns out the A-10 is significantly safer than most of the other planes. Only a total misreading would suggest that the A-10 is the plane most dangerous to friendly troops or civilians. For example, the data sheets the Air Force prepared for the press showed the A-10 had a “.3%” rate of incidents causing civilian casualties, which was the second lowest rate of any aircraft.

Using the same data sheets and long division, you find the A-10 suffered 1.4 civilian casualties for every 100 “kinetic” (weapons employed) sorties. The B-1B bomber, the platform Air Force headquarters always touts as the preferable alternative, had a rate 6.6—nearly five times worse than the A-10. Every other aircraft except for the AC-130 also had rates well in excess of the A-10, but neither the Air Force nor available reports even hinted this was the case.
So how did Air Force headquarters cook the numbers? For one, there was the time frame. The chart comparing civilian casualties starts in 2010, excluding the 2009 Granai Massacre in which a B-1 killed between 26 and 147 civilians and wounded many more. The Afghan Independent Human Rights Commission estimated 97 civilians killed, which the Department of Defense has not disputed. Including 2009 would have made the B-1 bomber the worst killer of civilians in theater.

For the fratricide data, on the other hand, the Air Force incongruously extended the time-frame back to 2001. If they had used the same time-frame, the B-1 bomber’s killing of five American troops in 2014 would have made it top the list for fratricide.

Second, the press reports’ data doctoring excluded all wounded U.S. troops, all killed or wounded allied troops, and all wounded civilians over the same time period. Including these statistics would have collapsed their case against the A-10. If the Air Force included all friendly killed and wounded, three aircraft would have caused substantially greater total fratricide losses than the A-10. This was also an obvious conclusion from the released data sheets, but not mentioned in the press reports.

Finally and most importantly, to make sure no one could compare aircraft using the crucially important friendly casualty rate per 100 sorties, the Air Force withheld as classified the number of firing sorties each plane flew during the fratricide data period (2001 to 2014)—notably the same data they declassified for their civilian casualty chart from 2010 to 2014.

Using these declassified 2010 to 2014 sortie totals and corresponding civilian casualty totals for each plane, simple long division yields the following table of casualty rates for each plane.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Civilian Casualties per 100 Kinetic Sorties</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-130</td>
<td>0.7</td>
</tr>
<tr>
<td>A-10</td>
<td>1.4</td>
</tr>
<tr>
<td>F-15E</td>
<td>1.6</td>
</tr>
<tr>
<td>F-16</td>
<td>2.1</td>
</tr>
<tr>
<td>F-18</td>
<td>2.2</td>
</tr>
<tr>
<td>B-1</td>
<td>6.6</td>
</tr>
<tr>
<td>AV-8</td>
<td>8.4</td>
</tr>
</tbody>
</table>

The table makes it clear that the A-10 is the safest airplane in combat in Afghanistan, except for the AC-130. In fact, the A-10 produces nearly 5 times fewer civilian casualties per firing sortie than the B-1 bomber, even in the artificially truncated 2010 to 2014 time period. And when you consider that the A-10 makes at least two to three times as many firing passes per kinetic sortie as the B-1 bomber, the comparison becomes even more lopsided, with the A-10 causing at least 9 to 13 times fewer civilian casualties per effective firing attack than the B-1 bomber.

As for friendly troop losses, when and if the Air Force is forced to release this still-classified data on sortie totals for the fratricide data period, it is almost certain that the A-10 results will be similarly lopsided.

Retiring the A-10 gets rid of a ground-supporting mission that Air Force generals despise, and protects the F-35 Joint Strike Fighter program from a combat-proven competitor. As part of the nation’s obligation to provide the best possible close air support for our troops in current and future battle, it is essential that Congress investigate whether or not the A-10 is critical to the safety of the people who are fighting our wars. Congress should also prevent Air Force headquarters from recklessly retiring any additional A-10s until the truth has been determined. Congress needs to ask the Government Accountability Office (GAO) to gather and assess information from service members with close air support combat experience plus all combat data, fratricide and civilian casualty data, and data about kinetic sorties. The GAO should then report back to the House and Senate Armed Services committees before they mark up the new defense policy bill. In addition, these committees should hold hearings on the A-10 controversy and include witnesses with meaningful combat experience—and not limit their hearings to witnesses hand-selected by Air Force headquarters—to provide the needed facts to assess the Air Force’s troubling effort to deprive our forces of the A-10’s unique capabilities as fighting continues in the Middle East and Afghanistan. Finally, Congress should hold any Air Force officers stifling or retaliating against those service members who make protected communications to Congress accountable by removing them from positions of leadership.

What we don’t need is more doctored and incomplete information from Air Force headquarters that’s meant to support their dumping of the A-10.
The Defense Monitor

The Project On Government Oversight is a nonpartisan independent watchdog that champions good government reforms. POGO’s investigations into corruption, misconduct, and conflicts of interest achieve a more effective, accountable, open, and ethical federal government.

Inside

1. Developing, Buying, and Fielding Superior Weapon Systems
 By Thomas Christie

3. As the Irrepressible Wheeler Retires, Smithberger Takes the Helm
 By Jacob Marx

 By Mandy Smithberger

10. Air Force Headquarters Continues Campaign Against A-10
 By Mandy Smithberger